Maskierte Angst: Eine Gruppe von Nervenzellen steuert das Angstverhalten im Gehirn (rechts). Dieses kann durch die Aktivität einer zweiten Gruppe maskiert werden (links) – allerdings ohne dass die Angst vollständig verschwindet. (Carlos Toledo/Bernstein Center Freiburg).Die maskierte Angst

 

Simulationen von Angstzuständen können deren Entstehung erklären – und wieso es schwierig ist, sie loszuwerden

 

Freiburg (18. März 2011) – Das Angstempfinden ist ein natürlicher Begleiter unseres Lebens und ein sinnvoller Schutzmechanismus. Doch manchmal nehmen Ängste überhand und sind nur schwer wieder abzulegen. Wissenschaftlerinnen und Wissenschaftler aus Freiburg, Basel und Bordeaux haben nun die Vorgänge im Gehirn bei der Entstehung und Unterdrückung von Ängsten im Computer simuliert. In der aktuellen Ausgabe der Fachzeitschrift „PLoS Computational Biology“ erklären Ioannis Vlachos vom Bernstein Center der Universität Freiburg und Kollegen aus Bordeaux und Basel erstmals, auf welche Weise scheinbar abgelegte Ängste in Wirklichkeit nur verdeckt, aber nicht verschwunden sein können. Der Grund für die Hartnäckigkeit von Ängsten ist, dass sie buchstäblich tief sitzen: Tief unter dem Großhirn liegt in unserem Denkorgan der „Mandelkern“. Er spielt im Angstverhalten eine zentrale Rolle.

 

Angstreaktionen werden oft an Mäusen erforscht, indem ein neutraler Reiz – beispielsweise ein Klang – gemeinsam mit einem unangenehmen Reiz auftritt. Die Tiere lernen so, auch vor diesem Klang Angst zu haben. Eine wichtige Rolle spielt dabei der Kontext: Wenn der ängstigende Klang viele Male in einem neuen Umfeld vorgespielt wird, ohne dass etwas Unangenehmes passiert, legen die Mäuse ihre Angst ab. Sie kehrt aber sofort zurück, wenn der Klang im ursprünglichen oder in einem völlig neuen Kontext auftritt. Hatten die Mäuse etwa nicht verlernt sich zu fürchten? Dass Angstempfinden im Gehirn „verdeckt“ werden kann, ist seit längerem bekannt. Vor kurzem entdeckten zwei Ko-Autoren der aktuellen Studie, dass zwei Gruppen von Nervenzellen im Mandelkern dabei eine Rolle spielen. Ioannis Vlachos und Kollegen erklären nun durch den „Nachbau“ des Nervennetzes, wie die Maskierung der Angst konkret abläuft: Eine Gruppe von Zellen steuert das Angstverhalten, die zweite die Unterdrückung von Angst. Ist die zweite Gruppe aktiv, verhindert sie, dass die Aktivität der ersten an andere Stellen im Gehirn weitergeleitet wird. Trotzdem sind die Verbindungen zwischen den Zellen, die Angst kodieren, noch vorhanden. Sobald die Maskierung wegfällt, zum Beispiel durch eine Veränderung des Kontexts, werden diese Verbindungen schnell wieder aktiv und die Angst kehrt zurück. Diese Einsichten, so die Forscher, sind auf den Menschen übertragbar und helfen zu verstehen, wie Ängste erfolgreich therapiert werden können.

 

 

  • Vlachos I, Herry C, Lüthi A, Aertsen A und Kumar A (2011) Context- Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala. PLoS Comput Biol 7(3): e1001104. doi:10.1371/journal.pcbi.1001104

 

 

Abbildung oben: Maskierte Angst: Eine Gruppe von Nervenzellen steuert das Angstverhalten im Gehirn (rechts). Dieses kann durch die Aktivität einer zweiten Gruppe maskiert werden (links) – allerdings ohne dass die Angst vollständig verschwindet. (Carlos Toledo/Bernstein Center Freiburg).

 

 


Quelle: Bernstein Center Freiburg / Albert-Ludwigs-Universität, 18.03.2011 (tB).

MEDICAL NEWS

New guidance to prevent the tragedy of unrecognized esophageal intubation
Overly restrictive salt intake may worsen outcomes for common form…
COVID-19 vaccines are estimated to have prevanented 20 million deaths…
Novel sleep education learning modules developed for nurse practitioners
Scientists discover how salt in tumours could help diagnose and…

SCHMERZ PAINCARE

Aktuelle Versorgungssituation der Opioidtherapie im Fokus
Individuelle Schmerztherapie mit Opioiden: Patienten im Mittelpunkt
Versorgung verbessern: Deutsche Gesellschaft für Schmerzmedizin fordert die Einführung des…
Pflegeexpertise im Fokus: Schmerzmanagement nach Operationen
Versorgung verbessern: Bundesweite Initiative der Deutschen Gesellschaft für Schmerzmedizin zu…

DIABETES

Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT
„Wissen was bei Diabetes zählt: Gesünder unter 7 PLUS“ gibt…
Kaltplasma bei diabetischem Fußsyndrom wirkt via Wachstumsfaktoren
Typ-1-Diabetes: InRange – auf die Zeit im Zielbereich kommt es…

ERNÄHRUNG

Gesunde Ernährung: „Nicht das Salz und nicht das Fett verteufeln“
Mangelernährung gefährdet den Behandlungserfolg — DGEM: Ernährungsscreening sollte zur klinischen…
Wie eine Diät die Darmflora beeinflusst: Krankenhauskeim spielt wichtige Rolle…
DGEM plädiert für Screening und frühzeitige Aufbautherapie: Stationäre COVID-19-Patienten oft…
Führt eine vegane Ernährungsweise zu einer geringeren Knochengesundheit?

ONKOLOGIE

Nahrungsergänzungsmittel während der Krebstherapie: Es braucht mehr Bewusstsein für mögliche…
Fusobakterien und Krebs
Fortgeschrittenes Zervixkarzinom: Pembrolizumab verlängert Leben
Krebspatienten unter Immuntherapie: Kein Hinweis auf erhöhtes Risiko für schwere…
Aktuelle Kongressdaten zum metastasierten Mammakarzinom und kolorektalen Karzinom sowie Neues…

MULTIPLE SKLEROSE

Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?
Neuer Therapieansatz für Multiple Sklerose und Alzheimer
„Ich messe meine Multiple Sklerose selbst!“ – Digitales Selbstmonitoring der…

PARKINSON

Alexa, bekomme ich Parkinson?
Meilenstein in der Parkinson-Frühdiagnose
Parkinson-Erkrankte besonders stark von Covid-19 betroffen
Gangstörungen durch Kleinhirnschädigung beim atypischen Parkinson-Syndrom
Parkinson-Agenda 2030: Die kommenden 10 Jahre sind für die therapeutische…