Abb.: Dr. Florian Stelzle bei der Laserablation. Photo: Deutsche Forschungsgemeinschaft (DFG)Operieren ohne Skalpell

 

Erlangen (25. März 2011) – Haut, Muskeln, Nerven und selbst Knochen: Messerscharf und äußerst präzise kann der Chirurg bei einer Operation mit einem Laser jedes Gewebe durchtrennen, ohne den Patienten auch nur zu berühren. Wie tief der Laser in das Gewebe eindringt und was er zerschneidet, kann der Arzt allerdings nicht kontrollieren und muss somit häufig auf dessen Einsatz verzichten. Ein interdisziplinäres Team aus Ärzten, Ingenieuren, Mathematikern und Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) forscht daher gemeinsam nach einer Möglichkeit, den Laser besser steuern zu können.

 

Das Projekt trägt den Titel „Tissue specific laser surgery“ und wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Über einen Zeitraum von zunächst eineinhalb Jahren fließen rund 140.000 Euro an die Projektpartner. An dem Forschungsvorhaben beteiligt sind FAU-Wissenschaftler der Mund-, Kiefer- und Gesichtschirurgischen Klinik des Universitätsklinikums Erlangen und Wissenschaftler des Bayerischen Laserzentrums (BLZ). Zudem wird das Projekt durch eine enge Kooperation mit der Graduate School of Advanced Optical Technologies (SAOT) und dem Institut für Medizininformatik, Biometrie und Epidemiologie unterstützt.

 

 

Die Idee der Forscher

 

„Unser Ziel ist, einen optischen Feedbackmechanismus zu entwickeln, der dem Arzt mitteilt, welche Gewebeschichten der Laser durchtrennt“, erläutert Dr. Florian Stelzle von der Mund-, Kiefer- und Gesichtschirurgischen Klinik, der das Projekt gemeinsam mit Prof. Dr. Michael Schmidt leitet, dem Inhaber des Lehrstuhls für Photonische Technologien an der FAU und zugleich Vorsitzenden des BLZ. Dazu wollen die Wissenschaftler zwei optische Systeme einsetzen, die bei einer Operation parallel arbeiten: Während der Laser Gewebe schneidet, macht er immer wieder kurze Pausen. Diese Pausen nutzt eines der optischen Systeme, um per diffus reflektierten Lichtes und Fluoreszenz zu ermitteln, welches Gewebe der Laser unmittelbar als nächstes durchtrennen wird. Das andere optische System analysiert die beim Laserabtrag entstehende Plasma- und Partikelwolke, um zu erkennen, welches Gewebe unmittelbar zuvor durchtrennt wurde. Diese Doppelstrategie soll sicherstellen, dass die Chirurgen ausschließlich das geplante Gewebe durchtrennen und umliegendes Gewebe nicht durch zu tiefe oder an falscher Stelle eingesetzte Laser- Schnitte irreparabel verletzen.

 

 

Die Umsetzung

 

Bis zur praktischen Anwendung ist es ein weiter Weg. „Als erstes müssen wir ermitteln, ob es mit optischen Methoden überhaupt möglich ist, verschiedene Gewebearten voneinander zu unterscheiden“, sagt Dr. Florian Stelzle. Hier sind die Forscher große Schritte vorangekommen. Bei der Untersuchung von gesundem Gewebe haben sie festgestellt, dass beispielsweise Nervengewebe Licht auf andere Weise reflektiert und ein anderes Fluoreszenzspektrum aufweist als Muskel- oder Fettgewebe. Das heißt, dass bei unverändertem Gewebe die Gewebe-Erkennung mit einem optischen System funktioniert. Anders könnte es bei Gewebe sein, das bereits mit einem Laser bearbeitet wurde. „Durch die hohe Energie, die der Laser überträgt, verändern sich die optischen Eigenschaften der Gewebe. Wir müssen also ermitteln, ob auch in diesem Fall die einzelnen Gewebearten noch für das optische System zu unterscheiden sind“, sagt Stelzle. Ist das geschehen, kann dieses System schon einmal arbeiten und eine Aussage darüber treffen, welches Gewebe der Laser als nächstes durchtrennen wird.

 

Das andere optische System soll die Plasma- und Partikelwolke untersuchen, die beim Laserabtrag entsteht. „Genauer gesagt, liefert das System nur Bilder der Abtragswolke. Diese Bilder werden dann binnen Sekundenbruchteilen von einem Computer auf ihre optischen Bestandteile hin analysiert“, erläutert Dr. Florian Stelzle. Die Wissenschaftler planen, unterschiedlichste Gewebearten, z.B. Muskel-, Nerven- und Fettgewebe aber auch Knorpel und Knochen mit dem Laser abzutragen und alle Daten über die dabei entstehenden optischen Erscheinungen zu sammeln, um diese Muster im PC zu speichern. So wird eine Art optische Bibliothek der Gewebe entstehen. Während der Operation kann der Computer dann die gespeicherten Informationen abrufen und analysieren, welches Gewebe als letztes durchtrennt wurde.

 

Die Zukunftsvision der Forscher sei, sagt Stelzle, ein Lasersystem zu entwickeln, das mit Hilfe des optischen Feedbacksystems – binnen der kurzen Pausen beim Lasern – alle Infos abrufen kann, um den Laservorgang hoch präzise zu steuern: „Die Idee ist, z.B. den Unterkieferknochen mit dem Laser zu durchtrennen und dabei gleichzeitig den Nerven, der in diesem Knochen verläuft, nicht zu tangieren.“

 

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

  


Quelle: Friedrich-Alexander-Universität Erlangen-Nürnberg, 25.03.2011 (tB).

MEDICAL NEWS

New guidance to prevent the tragedy of unrecognized esophageal intubation
Overly restrictive salt intake may worsen outcomes for common form…
COVID-19 vaccines are estimated to have prevanented 20 million deaths…
Novel sleep education learning modules developed for nurse practitioners
Scientists discover how salt in tumours could help diagnose and…

SCHMERZ PAINCARE

Aktuelle Versorgungssituation der Opioidtherapie im Fokus
Individuelle Schmerztherapie mit Opioiden: Patienten im Mittelpunkt
Versorgung verbessern: Deutsche Gesellschaft für Schmerzmedizin fordert die Einführung des…
Pflegeexpertise im Fokus: Schmerzmanagement nach Operationen
Versorgung verbessern: Bundesweite Initiative der Deutschen Gesellschaft für Schmerzmedizin zu…

DIABETES

Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT
„Wissen was bei Diabetes zählt: Gesünder unter 7 PLUS“ gibt…
Kaltplasma bei diabetischem Fußsyndrom wirkt via Wachstumsfaktoren
Typ-1-Diabetes: InRange – auf die Zeit im Zielbereich kommt es…

ERNÄHRUNG

Gesunde Ernährung: „Nicht das Salz und nicht das Fett verteufeln“
Mangelernährung gefährdet den Behandlungserfolg — DGEM: Ernährungsscreening sollte zur klinischen…
Wie eine Diät die Darmflora beeinflusst: Krankenhauskeim spielt wichtige Rolle…
DGEM plädiert für Screening und frühzeitige Aufbautherapie: Stationäre COVID-19-Patienten oft…
Führt eine vegane Ernährungsweise zu einer geringeren Knochengesundheit?

ONKOLOGIE

Nahrungsergänzungsmittel während der Krebstherapie: Es braucht mehr Bewusstsein für mögliche…
Fusobakterien und Krebs
Fortgeschrittenes Zervixkarzinom: Pembrolizumab verlängert Leben
Krebspatienten unter Immuntherapie: Kein Hinweis auf erhöhtes Risiko für schwere…
Aktuelle Kongressdaten zum metastasierten Mammakarzinom und kolorektalen Karzinom sowie Neues…

MULTIPLE SKLEROSE

Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?
Neuer Therapieansatz für Multiple Sklerose und Alzheimer
„Ich messe meine Multiple Sklerose selbst!“ – Digitales Selbstmonitoring der…

PARKINSON

Alexa, bekomme ich Parkinson?
Meilenstein in der Parkinson-Frühdiagnose
Parkinson-Erkrankte besonders stark von Covid-19 betroffen
Gangstörungen durch Kleinhirnschädigung beim atypischen Parkinson-Syndrom
Parkinson-Agenda 2030: Die kommenden 10 Jahre sind für die therapeutische…