MEDIZIN

DOC-CHECK LOGIN

Abb.: Dr. Florian Stelzle bei der Laserablation. Photo: Deutsche Forschungsgemeinschaft (DFG)Operieren ohne Skalpell

 

Erlangen (25. März 2011) – Haut, Muskeln, Nerven und selbst Knochen: Messerscharf und äußerst präzise kann der Chirurg bei einer Operation mit einem Laser jedes Gewebe durchtrennen, ohne den Patienten auch nur zu berühren. Wie tief der Laser in das Gewebe eindringt und was er zerschneidet, kann der Arzt allerdings nicht kontrollieren und muss somit häufig auf dessen Einsatz verzichten. Ein interdisziplinäres Team aus Ärzten, Ingenieuren, Mathematikern und Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) forscht daher gemeinsam nach einer Möglichkeit, den Laser besser steuern zu können.

 

Das Projekt trägt den Titel „Tissue specific laser surgery“ und wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Über einen Zeitraum von zunächst eineinhalb Jahren fließen rund 140.000 Euro an die Projektpartner. An dem Forschungsvorhaben beteiligt sind FAU-Wissenschaftler der Mund-, Kiefer- und Gesichtschirurgischen Klinik des Universitätsklinikums Erlangen und Wissenschaftler des Bayerischen Laserzentrums (BLZ). Zudem wird das Projekt durch eine enge Kooperation mit der Graduate School of Advanced Optical Technologies (SAOT) und dem Institut für Medizininformatik, Biometrie und Epidemiologie unterstützt.

 

 

Die Idee der Forscher

 

„Unser Ziel ist, einen optischen Feedbackmechanismus zu entwickeln, der dem Arzt mitteilt, welche Gewebeschichten der Laser durchtrennt“, erläutert Dr. Florian Stelzle von der Mund-, Kiefer- und Gesichtschirurgischen Klinik, der das Projekt gemeinsam mit Prof. Dr. Michael Schmidt leitet, dem Inhaber des Lehrstuhls für Photonische Technologien an der FAU und zugleich Vorsitzenden des BLZ. Dazu wollen die Wissenschaftler zwei optische Systeme einsetzen, die bei einer Operation parallel arbeiten: Während der Laser Gewebe schneidet, macht er immer wieder kurze Pausen. Diese Pausen nutzt eines der optischen Systeme, um per diffus reflektierten Lichtes und Fluoreszenz zu ermitteln, welches Gewebe der Laser unmittelbar als nächstes durchtrennen wird. Das andere optische System analysiert die beim Laserabtrag entstehende Plasma- und Partikelwolke, um zu erkennen, welches Gewebe unmittelbar zuvor durchtrennt wurde. Diese Doppelstrategie soll sicherstellen, dass die Chirurgen ausschließlich das geplante Gewebe durchtrennen und umliegendes Gewebe nicht durch zu tiefe oder an falscher Stelle eingesetzte Laser- Schnitte irreparabel verletzen.

 

 

Die Umsetzung

 

Bis zur praktischen Anwendung ist es ein weiter Weg. „Als erstes müssen wir ermitteln, ob es mit optischen Methoden überhaupt möglich ist, verschiedene Gewebearten voneinander zu unterscheiden“, sagt Dr. Florian Stelzle. Hier sind die Forscher große Schritte vorangekommen. Bei der Untersuchung von gesundem Gewebe haben sie festgestellt, dass beispielsweise Nervengewebe Licht auf andere Weise reflektiert und ein anderes Fluoreszenzspektrum aufweist als Muskel- oder Fettgewebe. Das heißt, dass bei unverändertem Gewebe die Gewebe-Erkennung mit einem optischen System funktioniert. Anders könnte es bei Gewebe sein, das bereits mit einem Laser bearbeitet wurde. „Durch die hohe Energie, die der Laser überträgt, verändern sich die optischen Eigenschaften der Gewebe. Wir müssen also ermitteln, ob auch in diesem Fall die einzelnen Gewebearten noch für das optische System zu unterscheiden sind“, sagt Stelzle. Ist das geschehen, kann dieses System schon einmal arbeiten und eine Aussage darüber treffen, welches Gewebe der Laser als nächstes durchtrennen wird.

 

Das andere optische System soll die Plasma- und Partikelwolke untersuchen, die beim Laserabtrag entsteht. „Genauer gesagt, liefert das System nur Bilder der Abtragswolke. Diese Bilder werden dann binnen Sekundenbruchteilen von einem Computer auf ihre optischen Bestandteile hin analysiert“, erläutert Dr. Florian Stelzle. Die Wissenschaftler planen, unterschiedlichste Gewebearten, z.B. Muskel-, Nerven- und Fettgewebe aber auch Knorpel und Knochen mit dem Laser abzutragen und alle Daten über die dabei entstehenden optischen Erscheinungen zu sammeln, um diese Muster im PC zu speichern. So wird eine Art optische Bibliothek der Gewebe entstehen. Während der Operation kann der Computer dann die gespeicherten Informationen abrufen und analysieren, welches Gewebe als letztes durchtrennt wurde.

 

Die Zukunftsvision der Forscher sei, sagt Stelzle, ein Lasersystem zu entwickeln, das mit Hilfe des optischen Feedbacksystems – binnen der kurzen Pausen beim Lasern – alle Infos abrufen kann, um den Laservorgang hoch präzise zu steuern: „Die Idee ist, z.B. den Unterkieferknochen mit dem Laser zu durchtrennen und dabei gleichzeitig den Nerven, der in diesem Knochen verläuft, nicht zu tangieren.“

 

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

  


Quelle: Friedrich-Alexander-Universität Erlangen-Nürnberg, 25.03.2011 (tB).

MEDICAL NEWS

IU School of Medicine researchers develop blood test for anxiety
COVID-19 pandemic increased rates and severity of depression, whether people…
COVID-19: Bacterial co-infection is a major risk factor for death,…
Regenstrief-led study shows enhanced spiritual care improves well-being of ICU…
Hidden bacteria presents a substantial risk of antimicrobial resistance in…

SCHMERZ PAINCARE

Hydromorphon Aristo® long ist das führende Präferenzpräparat bei Tumorschmerz
Sorgen und Versorgen – Schmerzmedizin konkret: „Sorge als identitätsstiftendes Element…
Problem Schmerzmittelkonsum
Post-Covid und Muskelschmerz
Kopfschmerz bei Übergebrauch von Schmerz- oder Migränemitteln

DIABETES

Wie das Dexom G7 abstrakte Zahlen mit Farben greifbar macht…
Diabetes mellitus: eine der großen Volkskrankheiten im Blickpunkt der Schmerzmedizin
Suliqua®: Einfacher hin zu einer guten glykämischen Kontrolle
Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT

ERNÄHRUNG

Positiver Effekt der grünen Mittelmeerdiät auf die Aorta
Natriumaufnahme und Herz-Kreislaufrisiko
Tierwohl-Fleisch aus Deutschland nur mäßig attraktiv in anderen Ländern
Diät: Gehirn verstärkt Signal an Hungersynapsen
Süßigkeiten verändern unser Gehirn

ONKOLOGIE

Strahlentherapie ist oft ebenso effizient wie die OP: Neues vom…
Zanubrutinib bei chronischer lymphatischer Leukämie: Zusatznutzen für bestimmte Betroffene
Eileiter-Entfernung als Vorbeugung gegen Eierstockkrebs akzeptiert
Antibiotika als Störfaktor bei CAR-T-Zell-Therapie
Bauchspeicheldrüsenkrebs: Spezielle Diät kann Erfolg der Chemotherapie beeinflussen

MULTIPLE SKLEROSE

Multiple Sklerose: Aktuelle Immunmodulatoren im Vergleich
Neuer Biomarker für Verlauf von Multipler Sklerose
Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?

PARKINSON

Meilenstein in der Parkinson-Forschung: Neuer Alpha-Synuclein-Test entdeckt die Nervenerkrankung vor…
Neue Erkenntnisse für die Parkinson-Therapie
Cochrane Review: Bewegung hilft, die Schwere von Bewegungssymptomen bei Parkinson…
Technische Innovationen für eine maßgeschneiderte Parkinson-Diagnostik und Therapie
Biomarker und Gene: neue Chancen und Herausforderungen für die Parkinson-Diagnose…