HAUPTMENÜ
AWARDS
Forschergeist gefragt: 14. Novartis Oppenheim-Förderpreis für MS-Forschung ausgelobt
FernstudiumCheck Award: Deutschlands beliebteste Fernhochschule bleibt die SRH Fernhochschule
Vergabe der Wissenschaftspreise der Deutschen Hochdruckliga und der Deutschen Hypertoniestiftung
Den Patientenwillen auf der Intensivstation im Blick: Dr. Anna-Henrikje Seidlein…
Wissenschaft mit Auszeichnung: Herausragende Nachwuchsforscher auf der Jahrestagung der Deutschen…
VERANSTALTUNGEN
Wichtigster Kongress für Lungen- und Beatmungsmedizin ist erfolgreich gestartet
Virtuelle DGHO-Frühjahrstagungsreihe am 22.03. / 29.03. / 26.04.2023: Herausforderungen in…
Pneumologie-Kongress vom 29. März bis 1. April im Congress Center…
Die Hot Topics der Hirnforschung auf dem DGKN-Kongress für Klinische…
Deutscher Schmerz- und Palliativtag 2023 startet am 14.3.
DOC-CHECK LOGIN
Pannenhilfe der Antibiotikumproduktion entschlüsselt
Lichtenberg-Professor Peter Güntert legt gemeinsam mit Forscherkollegen neue Erkenntnisse zur Wirkweise von Antibiotika vor.
Veröffentlichung im renommierten Wissenschaftsjournal Nature am Donnerstag, 14. August
Hannover (13. August 2008) – Seit der Entdeckung des Penizillins in den 1920er Jahren versuchen Wissenschaftler unaufhörlich, weitere Antibiotika aus Mikroorganismen zu isolieren – zumeist aus Pilzen oder Bakterien. Da viele krankheitserregende Bakterienstämme zunehmend Resistenzen ausbilden gegen die bekannten und zugelassenen Antibiotika, kommt der Suche nach neuen, geeigneten Substanzen mit antibakterieller Wirkung heute hohe Bedeutung zu. Allerdings ist das Auffinden bisher unbekannter Mikroorganismen, die solche Substanzen synthetisieren, nur ein möglicher Weg, um neuer Antibiotika habhaft zu werden.
Ein anderer Weg ist, benötigte Antibiotika direkt herzustellen. Dazu muss man allerdings wissen, wie diese molekular aufgebaut sind und wie sie funktionieren – mithin auch, wie sich ihr molekularer Aufbau verändern lässt. Viele dieser Substanzen bestehen aus einer Kette einzelner Bausteine. Durch Austausch einzelner Module nun kann ein Baustein in dem Antibiotikum gezielt verändert und somit ein neues, maßgeschneidertes Molekül mit neuen Eigenschaften erzeugt werden. Man erhält also ein Antibiotikum, das im Erfolgsfall anders wirkt. Soweit die Theorie.
In der Praxis hat dieser Ansatz bisher nur sehr begrenzten Erfolg gehabt. Dies liegt daran, dass man nicht genau weiß, wie das Zusammenspiel der einzelnen Module während der Synthese funktioniert. Vor zwei Jahren entdeckte ein Forscherteam an der Universität Frankfurt am Main einen Mechanismus, mit dessen Hilfe das Antibiotikum-Molekül während der Synthese sozusagen von einem Modul zum anderen weitergereicht wird. Dabei übernehmen kleine "Transport-Eiweiße" – genauer: zwischen die Synthesemodule geschaltete Peptidyl-Carrier-Proteine (PCP) – quasi die Aufgabe eines Förderbandes: Sie gewährleisten so das Weiterreichen. Um nun wiederum die kontinuierliche Produktion dieser für die Mikroorganismen so wichtigen Substanzen zu garantieren, hat die Natur sicherheitshalber einen "Pannenservice" für die Peptidyl-Carrier-Proteine, eingerichtet. Er hält nach defekten Modulen Ausschau und setzt diese wieder instand. Soweit die Vorgeschichte.
Die molekularen Details dieses wichtigen Reparaturservices, ohne den die Produktion von Antibiotika in den Mikroorganismen wohl um rund 80 Prozent reduziert würde, hat jetzt ein internationales Forscherteam um Professor Dr. Volker Dötsch und den von der VolkswagenStiftung mit 1,25 Millionen Euro geförderten Lichtenberg-Professor Dr. Peter Güntert von der Goethe Universität Frankfurt am Main und dem Frankfurt Institute of Advanced Studies (FIAS) aufgeklärt. Die Ergebnisse werden am 14. August 2008 in der Zeitschrift Nature veröffentlicht. Den Wissenschaftlern ist es gelungen, zum ersten Mal Einzelheiten der Funktionsweise des Pannenservices zu klären.
Mit Hilfe der NMR-Spektroskopie (Nuclear Magnetic Resonance-Spektroskopie) ermittelten sie die Struktur des Reparatur-Eiweißes Thioesterase II sowie eines Komplexes dieses Proteins mit einem Peptidyl-Carrier-Protein. Der wichtigste Teil des PCP-Transporteiweißes ist dabei ein spezieller Ko-Faktor (4′-Phosphopantethein), an den die Syntheseprodukte der einzelnen Module gebunden werden. Durch ihn kann die Weitergabe zum nächsten Modul erfolgen. "Durch die Aufklärung der Funktionsweise und der strukturellen Unterschiede zweier essenzieller Komponenten der Antibiotika-Synthesekette sind wir nun der gezielten Synthese neuer, maßgeschneiderter Substanzen wieder ein Stück näher gekommen", bringt es Professor Peter Güntert auf den Punkt.
Veröffentlichung:
Structural basis for the selectivity of the external thioesterase of the surfactin synthetase
Alexander Koglin (1,2), Frank Löhr (1), Frank Bernhard (1), Vladimir R. Rogov (1,3), Dominique P. Frueh (2), Eric R Strieter (2), Mohammad R. Mofid (4), Peter Güntert (1,5), Gerhard Wagner (2), Christopher T. Walsh (2), Mohamed A. Marahiel (4) & Volker Dötsch (1)
(1) Institute of Biophysical Chemistry, Universität Frankfurt am Main;
(2) Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA;
(3) Institute of Protein Research Pushchino, Russia;
(4) Department of Chemistry/Biochemistry, Universität Marburg;
(5) Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main.
Quelle: Pressemitteilung der VolkswagenStiftung vom 13.08.2008.