HAUPTMENÜ
AWARDS
BGW vergibt Nachwuchspreis für Projekt “Kommunikation statt Kontrolle”
Novartis schreibt 12. Oppenheim-Förderpreis für Multiple Sklerose aus
Jetzt bewerben! Förderprogramm 2021 der pbm Academy Stiftung: Best-Practices im…
Palliativmediziner Thöns erhält Deutschen Schmerzpreis
Jetzt bewerben: RheumaPreis 2021 – positive Vorbilder gesucht!
VERANSTALTUNGEN
6. Mai 2021, 13.30-17.45 UHR, ONLINE: AVENUE-PAL-Symposium: Kooperation vieler zugunsten…
18. März 2021, 16.30 Uhr: „Wissen was bei Diabetes zählt:…
16.-19.06.2021: KIT 2021 – 15. Kongress für Infektionskrankheiten und Tropenmedizin
Pflegeforum zur COVID-19-Impfung: Impulsvortrag, Diskussionsrunde, Beratungshotline – immer donnerstags ab…
Der Deutsche Schmerz- und Palliativtag 2021 findet online statt: 9.…
DOC-CHECK LOGIN
Pannenhilfe der Antibiotikumproduktion entschlüsselt
Lichtenberg-Professor Peter Güntert legt gemeinsam mit Forscherkollegen neue Erkenntnisse zur Wirkweise von Antibiotika vor.
Veröffentlichung im renommierten Wissenschaftsjournal Nature am Donnerstag, 14. August
Hannover (13. August 2008) – Seit der Entdeckung des Penizillins in den 1920er Jahren versuchen Wissenschaftler unaufhörlich, weitere Antibiotika aus Mikroorganismen zu isolieren – zumeist aus Pilzen oder Bakterien. Da viele krankheitserregende Bakterienstämme zunehmend Resistenzen ausbilden gegen die bekannten und zugelassenen Antibiotika, kommt der Suche nach neuen, geeigneten Substanzen mit antibakterieller Wirkung heute hohe Bedeutung zu. Allerdings ist das Auffinden bisher unbekannter Mikroorganismen, die solche Substanzen synthetisieren, nur ein möglicher Weg, um neuer Antibiotika habhaft zu werden.
Ein anderer Weg ist, benötigte Antibiotika direkt herzustellen. Dazu muss man allerdings wissen, wie diese molekular aufgebaut sind und wie sie funktionieren – mithin auch, wie sich ihr molekularer Aufbau verändern lässt. Viele dieser Substanzen bestehen aus einer Kette einzelner Bausteine. Durch Austausch einzelner Module nun kann ein Baustein in dem Antibiotikum gezielt verändert und somit ein neues, maßgeschneidertes Molekül mit neuen Eigenschaften erzeugt werden. Man erhält also ein Antibiotikum, das im Erfolgsfall anders wirkt. Soweit die Theorie.
In der Praxis hat dieser Ansatz bisher nur sehr begrenzten Erfolg gehabt. Dies liegt daran, dass man nicht genau weiß, wie das Zusammenspiel der einzelnen Module während der Synthese funktioniert. Vor zwei Jahren entdeckte ein Forscherteam an der Universität Frankfurt am Main einen Mechanismus, mit dessen Hilfe das Antibiotikum-Molekül während der Synthese sozusagen von einem Modul zum anderen weitergereicht wird. Dabei übernehmen kleine "Transport-Eiweiße" – genauer: zwischen die Synthesemodule geschaltete Peptidyl-Carrier-Proteine (PCP) – quasi die Aufgabe eines Förderbandes: Sie gewährleisten so das Weiterreichen. Um nun wiederum die kontinuierliche Produktion dieser für die Mikroorganismen so wichtigen Substanzen zu garantieren, hat die Natur sicherheitshalber einen "Pannenservice" für die Peptidyl-Carrier-Proteine, eingerichtet. Er hält nach defekten Modulen Ausschau und setzt diese wieder instand. Soweit die Vorgeschichte.
Die molekularen Details dieses wichtigen Reparaturservices, ohne den die Produktion von Antibiotika in den Mikroorganismen wohl um rund 80 Prozent reduziert würde, hat jetzt ein internationales Forscherteam um Professor Dr. Volker Dötsch und den von der VolkswagenStiftung mit 1,25 Millionen Euro geförderten Lichtenberg-Professor Dr. Peter Güntert von der Goethe Universität Frankfurt am Main und dem Frankfurt Institute of Advanced Studies (FIAS) aufgeklärt. Die Ergebnisse werden am 14. August 2008 in der Zeitschrift Nature veröffentlicht. Den Wissenschaftlern ist es gelungen, zum ersten Mal Einzelheiten der Funktionsweise des Pannenservices zu klären.
Mit Hilfe der NMR-Spektroskopie (Nuclear Magnetic Resonance-Spektroskopie) ermittelten sie die Struktur des Reparatur-Eiweißes Thioesterase II sowie eines Komplexes dieses Proteins mit einem Peptidyl-Carrier-Protein. Der wichtigste Teil des PCP-Transporteiweißes ist dabei ein spezieller Ko-Faktor (4′-Phosphopantethein), an den die Syntheseprodukte der einzelnen Module gebunden werden. Durch ihn kann die Weitergabe zum nächsten Modul erfolgen. "Durch die Aufklärung der Funktionsweise und der strukturellen Unterschiede zweier essenzieller Komponenten der Antibiotika-Synthesekette sind wir nun der gezielten Synthese neuer, maßgeschneiderter Substanzen wieder ein Stück näher gekommen", bringt es Professor Peter Güntert auf den Punkt.
Veröffentlichung:
Structural basis for the selectivity of the external thioesterase of the surfactin synthetase
Alexander Koglin (1,2), Frank Löhr (1), Frank Bernhard (1), Vladimir R. Rogov (1,3), Dominique P. Frueh (2), Eric R Strieter (2), Mohammad R. Mofid (4), Peter Güntert (1,5), Gerhard Wagner (2), Christopher T. Walsh (2), Mohamed A. Marahiel (4) & Volker Dötsch (1)
(1) Institute of Biophysical Chemistry, Universität Frankfurt am Main;
(2) Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA;
(3) Institute of Protein Research Pushchino, Russia;
(4) Department of Chemistry/Biochemistry, Universität Marburg;
(5) Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main.
Quelle: Pressemitteilung der VolkswagenStiftung vom 13.08.2008.