Resistenzen bei der Chemotherapie von Krebs

 

Abb. 1: Tumorzellen ohne Multidrug-Resistenz. Die Zellen wurden mit einem Chemotherapeutikum behandelt, das Licht abstrahlt, wenn es mit einem Laser bestrahlt wird. Man erkennt deutlich, dass sich der Wirkstoff nur in Tumorzellen anreichert, die nicht resistent sind (starkes Leuchten). Quelle: AG PD Dr. Johanna WeißMünchen (13. August 2008) – Viele Krebsarten können nur schlecht mit Medikamenten (Chemotherapeutika) bekämpft werden, da sie gegenüber diesen Wirkstoffen entweder resistent sind oder im Laufe der Therapie resistent werden. Dabei besteht die Resistenz meist gegenüber einer großen Vielzahl von Chemotherapeutika (sogenannte Multidrug-Resistenz). Die Arbeitsgruppe um Johanna Weiß am Universitätsklinikum Heidelberg untersucht molekulare Grundlagen dieser Multidrug-Resistenz mit dem Ziel, die Chemotherapie von Krebspatienten zu optimieren bzw. zu individualisieren.

Die Multidrug-Resistenz von Tumoren stellt ein gravierendes Problem bei der Chemotherapie von Krebspatienten dar und ist mit einer schlechten Prognose der betroffenen Patienten assoziiert. Inzwischen weiß man, dass bestimmte Proteine (Arzneistofftransporter) wesentlich an diesem Phänomen beteiligt sind. Diese Transporter befinden sich in der Zellmembran und können die Chemotherapeutika aus den Tumorzellen pumpen. Sie verhindern so, dass die Arzneistoffe die Krebszellen abtöten. Zwei der wichtigsten Arzneistofftransporter, die zur Multidrug-Resistenz führen können, sind das P-Glykoprotein (Pgp) und das Breast Cancer Resistance Protein (BCRP).

Damit Pgp und BCRP aktiv sind, benötigen sie eine spezifische Umgebung in der Zellmembran. Diese besonderen Bereiche der Zellmembran (Mikrodomänen) zeichnen sich durch eine Anreicherung bestimmter Fettmoleküle (z.B. Cholesterol) und Proteine (z.B. Caveoline) aus. Die Arbeitsgruppe um Johanna Weiß hat in jüngster Zeit bereits nachweisen können, dass sich die Aktivität der Arzneistofftransporter Pgp und BCRP durch Veränderung des Cholesterolgehaltes der Membran beeinflussen lässt. Bei sinkendem Cholesterolgehalt nimmt auch die Transportaktivität dieser Proteine ab. Daneben scheint auch die Interaktion mit bestimmten Proteinen, z.B. Caveolin-1, eine wichtige Rolle für die Aktivität dieser Transporter zu spielen. Caveolin-1 wird außerdem eine wichtige Rolle bei der Tumorentstehung und -entwicklung zugeschrieben.

Die Arbeitsgruppe will nun die Frage klären, wie Caveolin-1 die Aktivität von Pgp und BCRP beeinflusst und welche Bedeutung die Interaktion für die Entstehung der Multidrug-Resistenz spielt. Dazu wird in ausgewählten Zelllinien das Gen für Caveolin-1 ausgeschaltet bzw. überexprimiert. In den so veränderten Zellen werden dann die Veränderung der Aktivität und Lokalisation von Pgp und BCRP sowie Einflüsse auf die Chemotherapieresistenz untersucht werden.

Für eine Verbesserung der Prognose von Patienten mit Tumoren unterschiedlichster Herkunft ist es entscheidend, Ursachen und Mechanismen der Multidrug-Resistenz aufzuklären und Ansätze für eine Erhöhung der Chemosensitivität zu untersuchen. Bislang sind die Ergebnisse, die den Zusammenhang zwischen Arzneistofftransportern und dem Therapieerfolg untersucht haben, nicht schlüssig. Dies könnte nach neuestem Stand des Wissens möglicherweise daran liegen, dass das Wechselspiel zwischen den Transportern und Caveolin-1 nicht mitberücksichtigt wurde. Ein weitergehendes Verständnis der molekularen Mechanismen der Interaktion zwischen den Transportern und Cav-1 ist daher unabdingbar, um einen tieferen Einblick in die Pathophysiologie der Multidrug-Resistenz zu erhalten und um der Individualisierung der Tumortherapie einen Schritt näher zu kommen.

 

Abb. 1: Tumorzellen ohne Multidrug-Resistenz. Die Zellen wurden mit einem Chemotherapeutikum behandelt, das Licht abstrahlt, wenn es mit einem Laser bestrahlt wird. Man erkennt deutlich, dass sich der Wirkstoff nur in Tumorzellen anreichert, die nicht resistent sind (starkes Leuchten). Quelle: AG PD Dr. Johanna Weiß

Abb. 1: Tumorzellen ohne Multidrug-Resistenz. Die Zellen wurden mit einem Chemotherapeutikum behandelt, das Licht abstrahlt, wenn es mit einem Laser bestrahlt wird. Man erkennt deutlich, dass sich der Wirkstoff nur in Tumorzellen anreichert, die nicht resistent sind (starkes Leuchten). Quelle: AG PD Dr. Johanna Weiß

Abb. 2: Tumorzellen mit Multidrug-Resistenz. Die resistenten Zellen leuchten nach der Behandlung nur schwach. Quelle: AG PD Dr. Johanna Weiß 

Abb. 2: Tumorzellen mit Multidrug-Resistenz. Die resistenten Zellen leuchten nach der Behandlung nur schwach. Quelle: AG PD Dr. Johanna Weiß

Die Projektleiterin leitet in der Abteilung Innere Medizin VI, Klinische Pharmakologie und Pharmakoepidemiologie des Universitätsklinikums Heidelberg das Molekularbiologisch-Biochemische Labor. Für weitere Informationen wenden Sie Sich bitte an PD Dr. Johanna Weiß (johanna.weiss@med.uni-heidelberg.de).

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 100.000 €.
Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen: www.wilhelm-sander-stiftung.de

 


 Quelle: Pressemitteilung der Wilhelm Sander-Stiftung vom 13.08.08.

MEDICAL NEWS

Inadequate sequencing of SARS-CoV-2 variants impedes global response to COVID-19
New meta-analysis finds cannabis may be linked to development of…
New guidance on how to diagnosis and manage osteoporosis in…
Starting the day off with chocolate could have unexpected benefits
Better mental health supports for nurses needed, study finds

SCHMERZ PAINCARE

Versorgung verbessern: Deutsche Gesellschaft für Schmerzmedizin fordert die Einführung des…
Pflegeexpertise im Fokus: Schmerzmanagement nach Operationen
Versorgung verbessern: Bundesweite Initiative der Deutschen Gesellschaft für Schmerzmedizin zu…
Jedes vierte Kind wünscht bessere Schmerzbehandlung
Lebensqualität von Patienten in der dauerhaften Schmerztherapie mit Opioiden verbessern

DIABETES

„Wissen was bei Diabetes zählt: Gesünder unter 7 PLUS“ gibt…
Toujeo® bei Typ-1-Diabetes: Weniger schwere Hypoglykämien und weniger Ketoazidosen 
Bundestag berät über DMP Adipositas: DDG begrüßt dies als Teil…
Mit der Smartwatch Insulinbildung steuern
Verbände fordern bessere Ausbildung und Honorierung von Pflegekräften für Menschen…

ERNÄHRUNG

Wie eine Diät die Darmflora beeinflusst: Krankenhauskeim spielt wichtige Rolle…
DGEM plädiert für Screening und frühzeitige Aufbautherapie: Stationäre COVID-19-Patienten oft…
Führt eine vegane Ernährungsweise zu einer geringeren Knochengesundheit?
Regelmässiger Koffeinkonsum verändert Hirnstrukturen
Corona-Erkrankung: Fehl- und Mangelernährung sind unterschätze Risikofaktoren

ONKOLOGIE

Anti-Myelom-Therapie mit zusätzlich Daratumumab noch effektiver
Positive Ergebnisse beim fortgeschrittenen Prostatakarzinom: Phase-III-Studie zur Radioligandentherapie mit 177Lu-PSMA-617
Lymphom-News vom EHA2021 Virtual. Alle Berichte sind nun online verfügbar!
Deutsch-dänisches Interreg-Projekt: Grenzübergreifende Fortbildungskurse in der onkologischen Pflege
Sotorasib: Neues Medikament macht Lungenkrebs-Patienten Hoffnung

MULTIPLE SKLEROSE

NMOSD-Erkrankungen: Zulassung von Satralizumab zur Behandlung von Jugendlichen und Erwachsenen
Verzögerte Verfügbarkeit von Ofatumumab (Kesimpta®)
Neuer Biomarker bei Multipler Sklerose ermöglicht frühe Risikoeinschätzung und gezielte…
Multiple Sklerose beginnt oft lange vor der Diagnose
Goldstandard für Versorgung bei Multipler Sklerose

PARKINSON

Meilenstein in der Parkinson-Frühdiagnose
Parkinson-Erkrankte besonders stark von Covid-19 betroffen
Gangstörungen durch Kleinhirnschädigung beim atypischen Parkinson-Syndrom
Parkinson-Agenda 2030: Die kommenden 10 Jahre sind für die therapeutische…
Gemeinsam gegen Parkinson: bessere Therapie durch multidisziplinäre Versorgung