Abb. 1: Querschnitt einer heilenden Hautwunde unter dem Mikroskop: In Wunde einwandernde Zellen (grün) schieben Hautzellen (rot) nach oben. Diese bilden einen Schild über nachrückenden Zellen. Bild: Hamamatsu TIGA Center, Universitätsklinikum HeidelbergUmliegende Hautareale mobilisieren Zellen für Wundverschluss

Wie Hautwunden heilen

 

Heidelberg (19. Dezember 2013) – Wissenschaftler des Universitätsklinikums Heidelberg haben den Grundmechanismus aufgeklärt, wie die Haut Wunden verschließt. Mit Hilfe modernster, hochauflösender Mikroskopietechnik beobachteten sie die Zellbewegungen in einem im Labor gezüchteten Gewebe, das der menschlichen Haut sehr nahe kommt, und entwickelten ein dreidimensionales Modell des Heilungsprozesses. Ein Team um Privatdozent Dr. Niels Grabe und Mitarbeiter Dr. Kai Safferling und Thomas Sütterlin zeigte: Die in die Wunde einwandernden Zellen selbst tragen – anders als bisher angenommen – nur wenig zur neuen Zellmasse bei, die die Wunde verschließt. Stattdessen bilden die umliegenden Hautareale massiv neue Zellen und schieben diese unter der intakten Haut hindurch in die Wunde. Die neuen Zellen legen dabei für ihre Größenverhältnisse erstaunliche Entfernungen von einigen Millimetern zurück. Die wegweisende Arbeit widerlegt bisherige Theorien zum Wundverschluss und unterstützt zukünftige Forschungsarbeiten u.a. zu chronischen Wunden. Sie ist nun online im renommierten Journal of Cell Biology erschienen.

Die Forscher verwendeten für ihre Beobachtungen mehrschichtige Gewebekulturen aus zwei Typen menschlicher Hautzellen, Keratinozyten und Fibroblasten, in verschiedenen Entwicklungsstufen. Diese im Reagenzglas gezüchteten Gewebestückchen sind zwar nur eine sehr vereinfachte Version der natürlichen Haut – es fehlen u.a. Immunzellen, Nerven oder Schweißdrüsen. Aber sie organisieren sich selbst und reparieren Verletzungen. „Dieses System ist ausreichend komplex, um dem natürlichen Heilungsmechanismen sehr nahe zu kommen, aber trotzdem gut zu untersuchen“, sagt Dr. Grabe, Leiter des Hamamatsu Tissue Imaging and Analysis (TIGA) Center am Bioquant Forschungszentrum der Universität Heidelberg, einer Kooperation zwischen dem Institut für Pathologie, dem Nationalen Centrum für Tumorerkrankungen (NCT) sowie der japanischen Firma Hamamatsu Photonics.


Zellen für den Wundverschluss schieben sich unter intakter Haut hindurch

In die acht Millimeter durchmessenden Gewebekulturen stanzten die Wissenschaftler jeweils zwei kleine Löcher von zwei Millimetern Durchmesser und verfolgten den Heilungsprozess bis zu zehn Tage lang. Dazu wurden zu verschiedenen Zeitpunkten Dünnschnitte angefertigt, mit speziellen Techniken gefärbt und vom Imaging-Roboter „NanoZoomer“ des TIGA Centers vollautomatisch im Millionstel-Millimeter-Bereich aufgearbeitet und abgebildet. Mit Hilfe der Daten aus dem NanoZoomer hatten die Forscher bereits ein virtuelles Hautgewebe erstellt, das sie nun mit den Informationen aus den einzelnen Schritten des Heilungsprozesses verknüpften. Heraus kam nun die erste dreidimensionale Computersimulation, die den zugrundeliegenden Mechanismus von Wundverschluss und Heilung aufzeigt.

„Es hat sich eindrucksvoll gezeigt, dass Wundheilung und speziell die Einwanderung der Zellen in die Wunde eine sehr komplexe Gesamtleistung des umliegenden Gewebes ist. Das kann man an einschichtigen Zellkulturen nicht erforschen“, erklärt Grabe. „Den größten Beitrag leisten die Hautregionen, die verhältnismäßig weit von der Wunde entfernt sind.“ Im Experiment startete die Bewegung der neuen Hautzellen in den äußersten Bereichen der Gewebekulturen, bis zu drei Millimeter von der Verletzung entfernt. Im lebenden Organismus könnte diese Strecke sogar noch weiter ausfallen. Wie auf einem Förderband schieben sich die neu gebildeten Zellen aus allen Richtungen unter der intakten Haut hindurch auf die Wunde zu. Gelangen sie dort ins Freie, werden sie von den nachrückenden Zellen nach oben gedrückt und reifen zu schildförmigen Zellen aus. Unter ihnen geschützt wandern weitere Zellen ein, bis die Wunde verschlossen ist. Das Team um Grabe nannte den Mechanismus „ExtendingShield Mechanismus“.


Neues Modell Voraussetzung für Fehlersuche bei chronischen Wunden

Die bisherigen Theorien zur Wundheilung besagten, dass sich die Zellen der Wundränder oder unmittelbar dahinter liegender Bereiche teilen und die Haut so in die Wunde hineinwächst. Diese Modelle sind nun widerlegt. „Mit dem neuen Modell haben wir den Grundstein zum besseren Verständnis von Problemen mit der Wundheilung gelegt. Erst jetzt kann man z.B. bei chronischen Wunden gezielt nach Fehlern in diesem Prozess suchen“, so Grabe. Auch für die Krebsforschung könnte das neue Modell wertvolle Impulse liefern. So ist der Mechanismus der Wundheilung vergleichbar mit der Einwanderung von Tumorzellen in gesundes Gewebe. „Eventuell sind die Steuerungsmechanismen ähnlich. Daraus könnte sich ein neuer Ansatz der Tumorkontrolle ergeben“, hofft der Wissenschaftler.

Die Arbeit ist Teil einer Förderinitiative des Bundesministeriums für Bildung und Forschung (BMBF) mit dem Verbundprojekt „Systembiologie chronischer Wunden“ sowie der BMBF-Nachwuchsgruppe FORSYS „Epidermale Homöostase“.


Literatur

 

  • K. Safferling, T. Sütterlin, K. Westphal, C. Ernst, K. Breuhahn, M. James, D. Jäger, N. Halama, und N. Grabe. 2013. Woundhealingrevised: A novelreepithelializationmechanismrevealedby in vitro and in silicomodels. J. CellBiol. 203:691-709


Weitere Informationen im Internet:

 

Videos unter:

 

 

 

Abb.: Computersimulation einer heilenden Hautwunde: Die nachrückenden Zellen sind hier türkis dargestellt. Bild: Hamamatsu TIGA Center, Universitätsklinikum Heidelberg 

 

Abb.: Computersimulation einer heilenden Hautwunde: Die nachrückenden Zellen sind hier türkis dargestellt. Bild: Hamamatsu TIGA Center, Universitätsklinikum Heidelberg

 


 

Quelle: Universitätsklinikum und Medizinische Fakultät Heidelberg, 19.12.2013 (tB).

MEDICAL NEWS

New guidance to prevent the tragedy of unrecognized esophageal intubation
Overly restrictive salt intake may worsen outcomes for common form…
COVID-19 vaccines are estimated to have prevanented 20 million deaths…
Novel sleep education learning modules developed for nurse practitioners
Scientists discover how salt in tumours could help diagnose and…

SCHMERZ PAINCARE

Aktuelle Versorgungssituation der Opioidtherapie im Fokus
Individuelle Schmerztherapie mit Opioiden: Patienten im Mittelpunkt
Versorgung verbessern: Deutsche Gesellschaft für Schmerzmedizin fordert die Einführung des…
Pflegeexpertise im Fokus: Schmerzmanagement nach Operationen
Versorgung verbessern: Bundesweite Initiative der Deutschen Gesellschaft für Schmerzmedizin zu…

DIABETES

Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT
„Wissen was bei Diabetes zählt: Gesünder unter 7 PLUS“ gibt…
Kaltplasma bei diabetischem Fußsyndrom wirkt via Wachstumsfaktoren
Typ-1-Diabetes: InRange – auf die Zeit im Zielbereich kommt es…

ERNÄHRUNG

Gesunde Ernährung: „Nicht das Salz und nicht das Fett verteufeln“
Mangelernährung gefährdet den Behandlungserfolg — DGEM: Ernährungsscreening sollte zur klinischen…
Wie eine Diät die Darmflora beeinflusst: Krankenhauskeim spielt wichtige Rolle…
DGEM plädiert für Screening und frühzeitige Aufbautherapie: Stationäre COVID-19-Patienten oft…
Führt eine vegane Ernährungsweise zu einer geringeren Knochengesundheit?

ONKOLOGIE

Nahrungsergänzungsmittel während der Krebstherapie: Es braucht mehr Bewusstsein für mögliche…
Fusobakterien und Krebs
Fortgeschrittenes Zervixkarzinom: Pembrolizumab verlängert Leben
Krebspatienten unter Immuntherapie: Kein Hinweis auf erhöhtes Risiko für schwere…
Aktuelle Kongressdaten zum metastasierten Mammakarzinom und kolorektalen Karzinom sowie Neues…

MULTIPLE SKLEROSE

Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?
Neuer Therapieansatz für Multiple Sklerose und Alzheimer
„Ich messe meine Multiple Sklerose selbst!“ – Digitales Selbstmonitoring der…

PARKINSON

Alexa, bekomme ich Parkinson?
Meilenstein in der Parkinson-Frühdiagnose
Parkinson-Erkrankte besonders stark von Covid-19 betroffen
Gangstörungen durch Kleinhirnschädigung beim atypischen Parkinson-Syndrom
Parkinson-Agenda 2030: Die kommenden 10 Jahre sind für die therapeutische…