MEDIZIN

DOC-CHECK LOGIN

Wie das Ohr zwischen Lärm und Flüstern unterscheidet

 

Wissenschaftler aus Göttingen haben herausgefunden, welche zellulären Mechanismen der Verarbeitung unterschiedlicher Schallstärken zu Grunde liegen

 

Abb.: Mikroskopieaufnahme von Haarzellen im Innenohr. Eine Haarzelle mit ihren Kontakten zu nachgeschalteten Nervenfasern ist schematisch hervorgehoben. Photo: T. MoserGöttingen (18. Februar 2009) – Das menschliche Gehör ist in der Lage, ein immenses Lautstärkespektrum wahrzunehmen. Der Lärm eines startenden Jumbojets beispielsweise drückt eine Million Mal stärker auf unser Trommelfell, als das Summen einer Mücke. Dennoch können wir alle Lautstärken, die dazwischen liegen, nicht nur hören, sondern auch auseinanderhalten. Wie bringt es das Ohr fertig, eine so weite Palette von Lautstärken abzudecken? Göttinger Wissenschaftler am Bernstein Zentrum für Computational Neuroscience haben sich unter der Leitung von Prof. Dr. Tobias Moser (Innenohr-Labor an der Universitätsmedizin Göttingen) den Mechanismus dahinter genauer angesehen. Das Geheimnis liegt offenbar darin, wie die kleinen Haarzellen im Innenohr Signale an die nachgeschalteten Nervenfasern weitergeben. Die Ergebnisse der Arbeit werden in der Fachzeitschrift "Proceedings of the National Academy of Sciences" veröffentlicht.

Das passiert im Ohr, wenn wir hören: Eine Schallwelle bringt zunächst das Trommelfell zum Schwingen – diese Bewegung wird als Druckwelle im Ohr weitergeleitet und setzt letztlich im Innenohr winzige Härchen auf so genannten Haarzellen in Bewegung. Die Haarzellen wandeln die Schwingungen der Härchen in Nervenimpulse um. Jede Haarzelle steht mit bis zu zwanzig nachgeschalteten Nervenfasern in Kontakt. Je nach Lautstärke aktiviert die Haarzelle eine unterschiedliche Anzahl dieser nachgeschalteten Nervenfasern. Die Übertragungseffizienz an den Kontaktstellen zwischen Haarzelle und Nervenfaser ist je nach Kontaktstelle unterschiedlich: Manche nachgeschalteten Zellen reagieren schon bei leisen Tönen, andere erst bei lauten.

Wie die Haarzellen dabei vorgehen, haben Professor Moser und seine Kollegen im Innenohr der Maus untersucht. Dabei konnten sie einen für Nervenzellen recht ungewöhnlichen Mechanismus aufdecken: Durch das Auslenken der Härchen einer Haarzelle verändert sich die elektrische Spannung über ihrer Zellmembran – und zwar umso mehr, je lauter das Signal ist. Diese Spannungsänderung öffnet spannungsgeregelte Kalziumkanäle, die sich an den Kontaktstellen zu den nachgeschalteten Nervenfasern befinden. Kalzium kann durch diese Kanäle ins Zellinnere strömen und verursacht die Signalübertragung von den Haarzellen auf nachgeschaltete Zellen. Die Arbeitsgruppe konnte zeigen: an den Kontaktstellen einer Haarzelle fließt verschieden viel Kalzium ein, obwohl alle Kalziumkanäle durch die gleiche Spannung gesteuert werden. "Diese Unterschiede zwischen den verschiedenen Kontaktstellen einer Haarzelle könnte erklären, warum an einigen Kontaktstellen bereits schwache Signale weitergeleitet werden, während andere Kontaktstellen erst bei stärkeren Signalen aktiv werden", sagt Prof. Dr. Tobias Moser.

Woher aber kommen diese Unterschiede in der einströmenden Kalziummenge? Mit ihren Experimenten konnten die Wissenschaftler zeigen, dass es zwei Gründe dafür gibt. Die Zahl der Kalziumkanäle ist von Kontaktstelle zu Kontaktstelle unterschiedlich. Außerdem reagieren die Kalziumkanäle in verschiedenen Kontaktstellen auch bei unterschiedlichen Membranspannungen. "Die Haarzelle stattet also ihre Kontaktstellen verschieden mit Kalziumkanälen aus, um nachgeschaltete Nervenfasern unterschiedlich stark zu aktivieren und so das gesamte Lautstärkespektrum abzudecken", erklären die Wissenschaftler das Ergebnis. Nun wollen die Wissenschaftler des Bernstein Zentrums die Mechanismen weiter untersuchen, die zu den Unterschieden in der Anzahl und dem Schaltverhalten der Kanäle führen.

Originalveröffentlichung
Thomas Frank, Darina Khimich, Andreas Neef & Tobias Moser.
Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. PNAS, online veröffentlicht , 16-20.02.2009

 

Abb.: Mikroskopieaufnahme von Haarzellen im Innenohr. Eine Haarzelle mit ihren Kontakten zu nachgeschalteten Nervenfasern ist schematisch hervorgehoben. Photo: T. Moser

 


 

Quelle: Pressemitteilung der Universität Göttingen vom 18.02.2009.

MEDICAL NEWS

IU School of Medicine researchers develop blood test for anxiety
COVID-19 pandemic increased rates and severity of depression, whether people…
COVID-19: Bacterial co-infection is a major risk factor for death,…
Regenstrief-led study shows enhanced spiritual care improves well-being of ICU…
Hidden bacteria presents a substantial risk of antimicrobial resistance in…

SCHMERZ PAINCARE

Hydromorphon Aristo® long ist das führende Präferenzpräparat bei Tumorschmerz
Sorgen und Versorgen – Schmerzmedizin konkret: „Sorge als identitätsstiftendes Element…
Problem Schmerzmittelkonsum
Post-Covid und Muskelschmerz
Kopfschmerz bei Übergebrauch von Schmerz- oder Migränemitteln

DIABETES

Wie das Dexom G7 abstrakte Zahlen mit Farben greifbar macht…
Diabetes mellitus: eine der großen Volkskrankheiten im Blickpunkt der Schmerzmedizin
Suliqua®: Einfacher hin zu einer guten glykämischen Kontrolle
Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT

ERNÄHRUNG

Positiver Effekt der grünen Mittelmeerdiät auf die Aorta
Natriumaufnahme und Herz-Kreislaufrisiko
Tierwohl-Fleisch aus Deutschland nur mäßig attraktiv in anderen Ländern
Diät: Gehirn verstärkt Signal an Hungersynapsen
Süßigkeiten verändern unser Gehirn

ONKOLOGIE

Strahlentherapie ist oft ebenso effizient wie die OP: Neues vom…
Zanubrutinib bei chronischer lymphatischer Leukämie: Zusatznutzen für bestimmte Betroffene
Eileiter-Entfernung als Vorbeugung gegen Eierstockkrebs akzeptiert
Antibiotika als Störfaktor bei CAR-T-Zell-Therapie
Bauchspeicheldrüsenkrebs: Spezielle Diät kann Erfolg der Chemotherapie beeinflussen

MULTIPLE SKLEROSE

Multiple Sklerose: Aktuelle Immunmodulatoren im Vergleich
Neuer Biomarker für Verlauf von Multipler Sklerose
Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?

PARKINSON

Meilenstein in der Parkinson-Forschung: Neuer Alpha-Synuclein-Test entdeckt die Nervenerkrankung vor…
Neue Erkenntnisse für die Parkinson-Therapie
Cochrane Review: Bewegung hilft, die Schwere von Bewegungssymptomen bei Parkinson…
Technische Innovationen für eine maßgeschneiderte Parkinson-Diagnostik und Therapie
Biomarker und Gene: neue Chancen und Herausforderungen für die Parkinson-Diagnose…