Intensivmedizinische Pflege von Frühchen

Sanftere künstliche Beatmung

 

Mannheim (16. Mai 2019) – Künstliche Beatmung ist häufig das letzte Mittel, um ein Leben zu retten. Leider geht sie oft mit akuten oder chronischen Lungenschädigungen einher – besonders, wenn das Beatmungsgerät gegen den Patienten arbeitet. Forscher der Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB entwickeln derzeit ein schonenderes Verfahren. Es ist auf der Sensor+Test zu sehen.

In der intensivmedizinischen Pflege von Frühchen ist die künstliche Beatmung aufgrund unterentwickelter Lungen in einigen Fällen notwendig. Dabei können verschiedene Komplikationen auftreten: Ein Volutrauma entsteht, wenn das Beatmungsgerät zu viel Luft in die kleine Lunge presst. Zu einem Barotrauma kommt es, wenn der Apparat Luft mit zu hohem Druck eineleitet, besonders wenn das Frühchen eigentlich gerade ausatmen möchte. Um beides zu vermeiden, haben sich Ärzte bisher mit einer Röhre durch Mund oder Nase beholfen, durch die beatmet wird. Sie lässt Platz in der Luftröhre, damit überschüssige Luft entweichen kann. Leider ist das nicht immer besonders schonend und auf die sich schnell ändernden Bedürfnisse der kleinen Patienten können Ärzte nur manuell reagieren. Ein automatisch regelbares Beatmungssystem wäre wünschenswert.

Jan Ringkamp und seine Kollegen von der PAMB arbeiten deshalb an einem sanfteren Verfahren. Thorax-Monitoring heißt der kleine Apparat, den die Forscher entwickelt haben. »Im Prinzip ist das ein Messgerät, das erkennt, ob ein künstlich beatmeter Patient gerade ein- oder ausatmen möchte«, erklärt Ringkamp. »Damit ist ein Beatmungsgerät in der Lage, sich ohne Verzögerung an die Wünsche des Patienten anzupassen.« Keine Volu- oder Barotraumata mehr – so die Vision.

 

Thorax-Monitoring erkennt den Wunsch des Patienten

Das Thorax-Monitoring verwendet zwei Antennen, die auf dem Brustkorb des Patienten angebracht sind. Die eine sendet eine elektromagnetische Welle aus, die andere empfängt sie. Dabei machen es sich die Wissenschaftler zunutze, dass Muskeln, Fett und Gewebe andere dielektrische Eigenschaften besitzen als die Atemluft in der Lunge. Klingt kompliziert, ist aber eigentlich ganz einfach: Beim Einatmen füllen sich die Lungenflügel mit Luft und dehnen sich aus. Der veränderte Luftanteil im Thorax führt dazu, dass die elektromagnetische Welle schnell vorankommt. Beim Ausatmen ist es umgekehrt: Die Lungenflügel fallen in sich zusammen, die elektromagnetische Welle kommt im Gewebe langsamer vorwärts.

Es gibt also einen deutlich messbaren Unterschied zwischen Ein- und Ausatmen, den das Thorax-Monitoring registriert. Das funktioniert auch bei Frühchen und anderen Patienten, die nicht selbst atmen können, dies aber versuchen. »Selbst wenn sich die Lunge nur minimal ausdehnt oder zusammenzieht, hat das Auswirkungen auf den Signalverlauf. An Mäusen mit einem Lungenvolumen unter einem Milliliter haben wir bereits sehr gute Ergebnisse erzielt«, erklärt Ringkamp. »Thorax-Monitoring erkennt also sozusagen den Wunsch des Patienten und kann das Beatmungsgerät anweisen ihn dabei zu unterstützen.«

 

Thorax-Monitoring auf der Sensor+Test

Einen frühen Prototyp haben die Wissenschaftler bereits gebaut und an sich selbst getestet. Ende Juni stellen sie ihn auf der Sensor+Test dem Fachpublikum vor: Halle 5, Stand 248. Zu sehen ist auf dem Messestand eine kleine Puppe, die an ein Beatmungsgerät angeschlossen ist. Ihr Körper ist mit Wasser gefüllt, ihre künstliche Lunge verdrängt das Wasser im Körper, auf ihrem Brustkorb sind die beiden Antennen angebracht. Ein Bildschirm zeigt das verarbeitete Signal des Thorax-Monitoring.

Ringkamp und seine Kollegen entwickeln das Thorax-Monitoring ständig weiter. So sollen künftig die beiden Antennen nicht mehr direkt auf dem Brustkorb angebracht
werden, sondern kontaktlos funktionieren. »Die Haut von Frühchen ist unterentwickelt«, sagt Ringkamp. »Es besteht die Gefahr, dass sie verletzt wird, wenn Ärzte oder Pfleger die Antennen abziehen.« Thorax-Monitoring veranschaulicht auch ohne Körperkontakt den Wunsch des Patienten.

 

Über die Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB

Die Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB des Fraunhofer IPA an der Medizinischen Fakultät Mannheim der Universität Heidelberg wurde vom Land Baden-Württemberg und der Fraunhofer-Gesellschaft eingerichtet, um Automatisierungspotenziale in der Medizin und Biotechnologie zu erschließen. Mit fünf interdisziplinären Gruppen arbeitet sie im Spannungsfeld von Diagnose und Therapie bis hin zu Labor und Produktion. Sie ist die erste bekannte Einrichtung mit diesem Schwerpunkt. Die Projektgruppe befindet sich im CUBEX41 inmitten des Universitätsklinikums Mannheim.

 

Abb. oben: Prototyp des Thorax-Monitoring. Photo und Copyright: Fraunhofer IPA

 


Quelle: Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, 16.05.2019 (tB).

Schlagwörter: , ,

MEDICAL NEWS

New guidance to prevent the tragedy of unrecognized esophageal intubation
Overly restrictive salt intake may worsen outcomes for common form…
COVID-19 vaccines are estimated to have prevanented 20 million deaths…
Novel sleep education learning modules developed for nurse practitioners
Scientists discover how salt in tumours could help diagnose and…

SCHMERZ PAINCARE

Aktuelle Versorgungssituation der Opioidtherapie im Fokus
Individuelle Schmerztherapie mit Opioiden: Patienten im Mittelpunkt
Versorgung verbessern: Deutsche Gesellschaft für Schmerzmedizin fordert die Einführung des…
Pflegeexpertise im Fokus: Schmerzmanagement nach Operationen
Versorgung verbessern: Bundesweite Initiative der Deutschen Gesellschaft für Schmerzmedizin zu…

DIABETES

Menschen mit Diabetes während der Corona-Pandemie unterversorgt? Studie zeigt auffällige…
Suliqua® zur Therapieoptimierung bei unzureichender BOT
„Wissen was bei Diabetes zählt: Gesünder unter 7 PLUS“ gibt…
Kaltplasma bei diabetischem Fußsyndrom wirkt via Wachstumsfaktoren
Typ-1-Diabetes: InRange – auf die Zeit im Zielbereich kommt es…

ERNÄHRUNG

Gesunde Ernährung: „Nicht das Salz und nicht das Fett verteufeln“
Mangelernährung gefährdet den Behandlungserfolg — DGEM: Ernährungsscreening sollte zur klinischen…
Wie eine Diät die Darmflora beeinflusst: Krankenhauskeim spielt wichtige Rolle…
DGEM plädiert für Screening und frühzeitige Aufbautherapie: Stationäre COVID-19-Patienten oft…
Führt eine vegane Ernährungsweise zu einer geringeren Knochengesundheit?

ONKOLOGIE

Nahrungsergänzungsmittel während der Krebstherapie: Es braucht mehr Bewusstsein für mögliche…
Fusobakterien und Krebs
Fortgeschrittenes Zervixkarzinom: Pembrolizumab verlängert Leben
Krebspatienten unter Immuntherapie: Kein Hinweis auf erhöhtes Risiko für schwere…
Aktuelle Kongressdaten zum metastasierten Mammakarzinom und kolorektalen Karzinom sowie Neues…

MULTIPLE SKLEROSE

Multiple Sklerose: Analysen aus Münster erhärten Verdacht gegen das Epstein-Barr-Virus
Aktuelle Daten zu Novartis Ofatumumab und Siponimod bestätigen Vorteil des…
Multiple Sklerose durch das Epstein-Barr-Virus – kommt die MS-Impfung?
Neuer Therapieansatz für Multiple Sklerose und Alzheimer
„Ich messe meine Multiple Sklerose selbst!“ – Digitales Selbstmonitoring der…

PARKINSON

Alexa, bekomme ich Parkinson?
Meilenstein in der Parkinson-Frühdiagnose
Parkinson-Erkrankte besonders stark von Covid-19 betroffen
Gangstörungen durch Kleinhirnschädigung beim atypischen Parkinson-Syndrom
Parkinson-Agenda 2030: Die kommenden 10 Jahre sind für die therapeutische…